BOOTSTRAP PERCOLATION ON RANDOM GEOMETRIC GRAPHS
نویسندگان
چکیده
منابع مشابه
Bootstrap Percolation on Geometric Inhomogeneous Random Graphs
Geometric inhomogeneous random graphs (GIRGs) are a model for scale-free networks with underlying geometry. We study bootstrap percolation on these graphs, which is a process modelling the spread of an infection of vertices starting within a (small) local region. We show that the process exhibits a phase transition in terms of the initial infection rate in this region. We determine the speed of...
متن کاملBootstrap Percolation on Random Geometric Graphs
Bootstrap percolation has been used effectively to model phenomena as diverse as emergence of magnetism in materials, spread of infection, diffusion of software viruses in computer networks, adoption of new technologies, and emergence of collective action and cultural fads in human societies. It is defined on an (arbitrary) network of interacting agents whose state is determined by the state of...
متن کاملBootstrap Percolation on Random Geometric Graphs Extended Abstract
Bootstrap percolation has been used effectively to model phenomena as diverse as emergence of magnetism in materials, spread of infection, diffusion of software viruses in computer networks, adoption of new technologies, and emergence of collective action and cultural fads in human societies. It is defined on an (arbitrary) network of interacting agents whose state is determined by the state of...
متن کاملBootstrap Percolation in Directed Inhomogeneous Random Graphs
Bootstrap percolation is a process that is used to model the spread of an infection on a given graph. In the model considered here each vertex is equipped with an individual threshold. As soon as the number of infected neighbors exceeds that threshold, the vertex gets infected as well and remains so forever. We perform a thorough analysis of bootstrap percolation on a novel model of directed an...
متن کاملOn the Critical Density for Percolation in Random Geometric Graphs
Percolation theory has become a useful tool for the analysis of large-scale wireless networks. We investigate the fundamental problem of characterizing the critical density λ c for d-dimensional Poisson random geometric graphs in continuum percolation theory. In two-dimensional space with the Euclidean norm, simulation studies show λ c ≈ 1.44, while the best theoretical bounds obtained thus far...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Probability in the Engineering and Informational Sciences
سال: 2013
ISSN: 0269-9648,1469-8951
DOI: 10.1017/s0269964813000405